Selamat Datang di Pertanian Modern !
home
BUDIDAYA IKAN KOMPOSIT DAN TERPADU

Prinsip dasar sistem budidaya ikan komposit adalah penebaran berbagai ikan cepat tumbuh, spesies ikan yang kompatibel dengan kebiasaan makan pelengkap untuk memanfaatkan secara efisien makanan alami yang ada di relung ekologi yang berbeda di kolam untuk memaksimalkan produksi ikan. Teknologi budidaya ikan komposit secara singkat meliputi pemberantasan gulma air dan ikan predator, pengapuran:aplikasi pemupukan berdasarkan kualitas tanah dan air tambak, stocking dengan benih ikan mas-catla utama India ukuran 100 mm, roh, mrigal, ikan mas eksotis, ikan mas perak, ikan mas rumput dan ikan mas dalam kombinasi dan kepadatan yang bijaksana; pemberian makanan tambahan secara teratur dan pemanenan ikan pada waktu yang tepat. Sistem budidaya ikan komposit dilakukan dengan mengadopsi tiga jenis kombinasi yaitu, budaya topi besar India saja, budaya ikan mas eksotik saja, dan budaya ikan mas India dan eksotis bersama-sama. Produksi ikan berkisar antara 3, 000 hingga 6, 000 Kg. per hektar per tahun diperoleh secara normal melalui sistem budidaya ikan komposit. Pengembangan langkah-langkah pengelolaan tambak intensif telah menyebabkan peningkatan hasil ikan lebih lanjut. Sistem peternakan ikan dan ternak terpadu yang berkembang akhir-akhir ini adalah budidaya ikan-bebek, budidaya ikan dan unggas, budidaya ikan-cum-babi, pemanfaatan limbah peternakan sapi dan daur ulang bubur pabrik biogas untuk produksi ikan.

Keuntungan dari sistem budaya gabungan, jumlah burung/hewan, kuantitas pupuk kandang yang dibutuhkan dan potensi produksi ikan dari sistem daur ulang dijelaskan. Budidaya ikan di sawah merupakan sistem pertanian ikan terpadu yang penting. Persyaratan penting sawah untuk melakukan budidaya ikan, ciri khas yang cocok untuk budidaya di sawah, kendala budidaya ikan di sawah karena praktik agraria baru-baru ini, dan metodologi budidaya ikan-padi yang lebih baik dibahas. Budidaya udang air tawar adalah praktik baru-baru ini. Udang air tawar raksasa Makrobrachium rosenbergii dan udang sungai India M. malcolmsonii adalah dua spesies yang paling disukai untuk tujuan pertanian di India. Pembiakan, manajemen penetasan, produksi benih, sistem budidaya dan potensi produksi air tawar

udang disajikan. Ikan penghirup udara yang penting secara komersial di India adalah murrel, memanjat bertengger, singhi dan magur. Teknik produksi benih dan sistem budidaya mereka dijelaskan.

C Hai mpo S dia e F adalah H C kamu lt kamu ulang

Tujuan utama budidaya ikan adalah untuk mencapai produksi ikan setinggi mungkin dari tambak dan sumber air. Teknik budidaya ikan meliputi pengelolaan tanah, air dan budidaya ikan. Dua kriteria, kurang konsumsi air oleh ikan dan fekunditas tinggi, sangat mendukung budidaya ikan. Ikan menyediakan makanan berkualitas tinggi yang kaya protein, vitamin dan nutrisi lain yang diperlukan untuk kesehatan dan pertumbuhan manusia.

Ledakan penduduk mengakibatkan luas lahan pertanian semakin berkurang, dan akibatnya, protein hewani kemungkinan akan lebih sedikit di masa depan karena keterbatasan ruang dan makanan. Ini menunjukkan bahwa semakin banyak protein hewani yang harus diperoleh dari perairan. Kita harus berpikir bagaimana menghasilkan lebih banyak protein hewani. Ikan merupakan sumber protein yang sangat baik. Kita harus mempertimbangkan produksi lebih banyak ikan di bawah kondisi terkendali di kolam karena ini menawarkan potensi terbesar dari semuanya.

Kolam ikan merupakan ekosistem yang kompleks. Permukaannya ditempati oleh organisme terapung seperti fitoplankton dan zooplankton. Wilayah kolom memiliki bahan organik hidup dan mati yang tenggelam dari permukaan dan bagian bawahnya diperkaya dengan detritus atau bahan organik mati. Daerah marginal memiliki vegetasi perairan yang beragam. Tingkat tropis yang berbeda dari kolam digunakan untuk meningkatkan keuntungan budidaya ikan. Oleh karena itu, konsep terbaru dalam budidaya ikan telah dirumuskan yang disebut budidaya ikan komposit. Ini juga dikenal sebagai polikultur atau pertanian campuran. Tujuan utama dari budidaya ikan intensif ini adalah untuk memilih dan menumbuhkan spesies ikan yang dapat bersaing dengan kebiasaan makan yang berbeda untuk memanfaatkan semua jenis makanan yang tersedia di berbagai daerah atau relung kolam ikan untuk mendapatkan produksi ikan yang maksimal.

Di masa lalu, hasil rata-rata ikan dari tambak serendah 500 kg/ha/tahun. Jumlah ini dianggap sangat buruk. Dalam budidaya ikan komposit lebih dari 10, 000/kg/ha/tahun hasil ikan dapat diperoleh di berbagai wilayah agroklimat di negara kita.

Su P erio R dia kamu cinta R th e mono C ult kamu R e

Monokultur adalah budidaya satu spesies ikan di kolam. Jika hanya satu spesies yang dimasukkan ke dalam kolam, karena pola makan yang sama, semua ikan berkumpul di satu tempat. Tentu saja, ketika monokultur lebih disukai, lebih banyak jumlah ikan dari satu spesies yang diintroduksi. Hal ini menyebabkan persaingan yang tinggi untuk makanan dan ruang. Karena perkelahian, kematian berat ikan akan terjadi. Karena jumlah makanan yang tidak mencukupi, ikan tidak akan tumbuh dengan ukuran yang baik dan hasilnya terpengaruh. Dalam sistem monokultur relung lain kosong dan di daerah itu dan makanan yang tersedia di relung ini tetap terbuang.

Budidaya ikan komposit tidak diragukan lagi lebih unggul daripada monokultur. Dalam budidaya ikan komposit, masalah di atas tidak akan ditemukan. Enam jenis ikan memanfaatkan makanan dari semua relung kolam, mendapatkan jumlah makanan yang baik, tumbuh dengan baik tanpa persaingan dan hasil juga sangat tinggi. Tingkat kematian dalam budidaya ikan komposit dapat diabaikan. Dalam monokultur hasil sekitar 500/kg/ha/tahun sulit, tetapi dalam sistem polikultur hasilnya sekitar 20 kali lebih banyak daripada monokultur dengan manajemen ilmiah.

Prin C iple S Hai F comp Hai duduk e fis H kultus kamu R e

Teknologi budidaya ikan komposit berbasis ilmiah bertujuan untuk memaksimalkan pemanfaatan produktivitas tambak. Tumbuh cepat, non-predator, jenis ikan pangan yang tidak dapat bersaing dibudidayakan bersama dengan kebiasaan makan pelengkap dan mampu memanfaatkan baik pakan alami maupun pakan tambahan. Pada saat yang sama, satu ikan berguna bagi yang lain. Misalnya kotoran ikan mas berguna untuk pertumbuhan organisme makanan ikan, yang menjadi makanan ikan lain. Ikan tidak pernah menghadapi persaingan untuk ruang dan makanan. Pengumpan bawah seperti ikan mas dan mrigal sebagian hidup dari kotoran ikan mas rumput. Jika pengumpan bawah tidak ada di kolam budidaya, kotoran ikan mas yang berlebihan dapat mencemari air. Jumlah optimum penebaran setiap jenis ikan cukup memanfaatkan relung ekologi yang berbeda. Potensi produktif atau daya dukung tambak dapat ditingkatkan dengan merangsang produksi pakan alami ikan melalui pemupukan dan penggunaan pakan tambahan untuk menyediakan pakan yang cukup untuk jumlah ikan yang ditebar.

fi S dia S kamu se D Saya n C Hai mpo S dia e F adalah H kultus kamu R e

Di seluruh dunia, ikan budidaya utama, khususnya untuk polikultur yang termasuk dalam famili ikan mas. Ada tiga sistem utama budidaya ikan mas di dunia. Ini adalah:

1. Sistem Cina:- Ikan mas Cina dibudidayakan bersama. Ini adalah ikan mas perak - Hypophthalamichthys molitrix , ikan mas rumput - Ctenopharyngodon idela dan ikan mas – Siprinus ikan mas . Ini juga disebut sebagai ikan eksotis di India.

2. Sistem India :- Ikan mas India dibudidayakan secara bersama-sama dan juga dibudidayakan dengan ikan mas Cina. Ikan mas ini adalah rohu – Labeo rohita , catla – Catla catla dan mrigal- Crirrhina mrigala .

3. Sistem Eropa :- Spesies utama yang dibudidayakan adalah ikan mas – Siprinus ikan mas .

Ikan mas Cina lainnya yang digunakan untuk budidaya ikan komposit adalah:ikan mas kepala besar – Aristichthys bangsawan , ikan mas lumpur - sirinus molitorella dan ikan mas hitam - Mylopharyngodon piceus .

Lele predator dan murrel juga dapat dimasukkan dalam sistem budidaya ikan komposit. Namun, lele dan murrel harus ditebar hanya setelah spesies ikan mas telah tumbuh ke ukuran yang cukup besar. Ikan rucah dan ikan mas muda jika ada, di kolam budidaya akan berfungsi sebagai sumber makanan yang baik untuk ikan lele dan murrel.

Ikan mas dan bandeng umumnya dibudidayakan dalam budidaya ikan komposit dalam sistem budidaya air payau. Ikan-ikan yang menghirup udara seperti murrel, ikan lele dan koi juga dibudidayakan bersama dalam sistem budidaya air tawar.

Di India dan Cina, polikultur lebih populer tidak seperti di negara-negara Eropa, di mana monokultur masih umum dan lazim. Karena fakta bahwa produksi benih ikan mas lebih mudah daripada ikan mas budidaya lainnya, mungkin, itu telah menjadi spesies budidaya yang dominan di seluruh dunia.

Ikan mas besar India lebih bersifat sungai dan ini biasanya tidak berkembang biak di perairan terbatas. Karenanya, anak-anak mereka masih dikumpulkan selama musim hujan dari sungai yang banjir. Pemisahan koleksi alam berdasarkan spesies adalah yang paling sulit, campuran mereka bersama dengan spesies yang tidak diinginkan ditebar di kolam. Praktek ini akhirnya melahirkan sistem polikultur, dasar ilmiah yang telah direalisasikan baru-baru ini.

Selama akhir lima puluhan spesies ikan mas eksotis, ikan mas biasa, ikan mas perak dan ikan mas rumput diperkenalkan di India. Ini telah berhasil dibudidayakan bersama dan sekarang dibudidayakan bersama dengan ikan mas besar India. Ikan mas dalam sistem budidaya sangat penting karena membantu dalam pengendalian biologis gulma air. Grass carp memakan tumbuhan air dengan rakus. Budidaya ikan komposit adalah perkembangan paling signifikan di negara ini dalam budidaya air tawar, selama periode mana, evolusi teknologi budidaya ikan multispesies di tambak berlangsung.

Pada setiap tingkat trofik dalam rantai makanan, sejumlah besar energi asli hilang dari sistem. Karenanya, budidaya ikan yang efisien bertujuan untuk membuat rantai sesingkat mungkin. Dengan demikian, ikan herbivora lebih disukai bersama dengan ikan pemakan zooplankton. Itu selalu lebih baik untuk mengecualikan ikan karnivora dari sistem.

Biasanya campuran plankton dan pemakan makrofita ditebar dalam sistem budidaya ikan. Mereka memanfaatkan nutrisi, yang sudah ditemukan di kolam atau diterapkan dari luar. Jika keseimbangan yang tepat tidak dipertahankan, mereka tidak tumbuh pada kecepatan yang sama dan satu kelompok mendominasi yang lain, sering memanfaatkan sebagian besar nutrisi dan meninggalkan sampah untuk yang lain. Untuk menjaga keseimbangan, penebaran dilakukan dengan campuran ikan dari kebiasaan makan yang berbeda. Fitoplankton yang tidak digembalakan diberi makan oleh zooplankton, dan untuk memanfaatkannya ikan yang memakan zooplankton ini termasuk dalam kombinasi. Kombinasi terbaik di India dalam sistem polikultur adalah rohu, catla, mrigal, ikan mas biasa, ikan mas perak dan ikan mas rumput. Kebiasaan makan mereka sangat berbeda, mereka tidak pernah bersaing satu sama lain dan bukan ikan pemangsa. Rohu adalah pengumpan kolom dan memanfaatkan plankton daerah itu saja. Catla adalah pengumpan permukaan dan hanya memakan Zooplankton. Mrigal adalah pengumpan bawah dan biaya pada plankton yang tersedia di bagian bawah, kebanyakan bentos. Ikan mas juga merupakan pengumpan bawah, tetapi hanya memakan sisa-sisanya. Ikan mas perak adalah pengumpan permukaan, tetapi hanya memakan fitoplankton. Ikan mas rumput hanya memakan vegetasi air. Itu berarti mereka memanfaatkan sebagian besar organisme makanan yang ada di kolam. Kombinasi ikan mas perak pemakan fitoplankton, kepala besar pemakan zooplankton dan ikan mas rumput pemakan rumput paling umum di Cina dan Asia Tenggara.

stok k di dalam G D e nsiti e S NS D stok k di dalam G R A ti Hai

Umumnya produksi ikan meningkat dengan bertambahnya jumlah ikan yang ditebar per satuan luas secara maksimal dan kemudian mulai menurun. Selalu ada tingkat penebaran optimal dalam situasi tertentu, yang memberikan produksi tertinggi dan ikan terbesar. Dalam kondisi padat pada kepadatan penebaran yang lebih tinggi, ikan dapat bersaing ketat untuk mendapatkan makanan dan dengan demikian menderita stres karena interaksi yang agresif. Ikan di bawah tekanan makan lebih sedikit dan tumbuh lambat. Dengan meningkatkan kepadatan penebaran di luar tingkat optimal, permintaan total oksigen meningkat dengan bahaya yang jelas, tetapi tidak ada peningkatan total hasil ikan yang diperoleh. Kepadatan penebaran dan rasio penebaran ikan harus didasarkan pada jumlah air dan jumlah produksi oksigen. Keenam varietas ikan mas utama India dan Cina di atas harus ditebar dengan kecepatan 5000 bibit dengan ukuran 75-100 mm/ha. Persentase penebaran ikan di atas dapat sebagai berikut:

Ikan mas Catla dan perak – 30 – 35%

Rohu  –  15 – 20 %

Ikan mas mrigal dan biasa – 45%

Ikan mas rumput – 5 – 10%

Dalam 5 – kombinasi spesies tidak termasuk ikan mas rumput, rasio penebaran yang optimal adalah catla 6(30%) :rohu 3(15%) :mrigal 5(25%) :ikan mas biasa 4(20%) :ikan mas perak 2(10%).

Dalam kombinasi 4 – spesies tidak termasuk ikan mas perak dan ikan mas rumput, rasio penebaran yang optimal adalah – catla 6(30%) :rohu 3 (15%) :mrigal 6(30%) :ikan mas 5(25%).

Dalam kombinasi 3 – spesies tidak termasuk ikan mas eksotik, rasio optimal adalah – catla 4 (40%) :rohu 3 (30%) :mrigal 3 (30%).

Kombinasi 8 spesies juga dimungkinkan untuk budidaya ikan komposit, dimana ikan bandeng dan ikan mas termasuk dalam sistem budidaya bersama dengan ikan mas besar India dan Cina. Namun pertumbuhan penambahan tersebut tidak memuaskan. Ikan bandeng merupakan ikan air payau. Biasanya rasio penebarannya adalah catla 2 :rohu 2 :mrigal 4 :ikan mas 3 :ikan mas perak 5 :ikan mas rumput 2 :ikan mas berbibir 1 :ikan bandeng 1.

Kelola e laki-laki T teknik Saya pertanyaan S

Metode manajemen pra-tebar dan pasca-tebar sudah dibahas dalam bab manajemen kolam penebaran, 5.

feedi n G :

Dengan bertambahnya daya dukung tambak baik dengan cara aerasi air, Pertumbuhan ikan dapat ditingkatkan lebih lanjut dengan penambahan pakan tambahan. Untuk mendapatkan produksi yang sangat tinggi, ikan diberi makan dengan protein – pakan yang kaya. Biasanya koefisien konversi adalah 1 :2 yaitu 2Kg pakan diberikan untuk setiap 1Kg hasil ikan. Dengan pakan tambahan seperti dedak padi dan bungkil, ikan tumbuh 10 kali lebih banyak. Informasi rinci diberikan dalam bab tentang makanan tambahan.

Ikan mas Grass biasanya diberi makan gulma air lunak, Suka Najas, hidril, Ceratophyllum dan chara , rumput hijauan atau pakan ternak cincang hijau seperti rumput Napier, Barseem, daun jagung, dll dan sampah sayuran dapur. Pakan ternak ditanam di tanggul kolam bertingkat dan diumpankan ke rumput gurame. Mereka diberi makan dua kali dengan kecepatan 100 Kg/ha pada bulan pertama dan kuantumnya meningkat sebesar 100Kg/bulan pada interval dua minggu atau bulanan, sampai akhir panen. Makanan ikan mas biasanya diletakkan di atas kerangka apung yang terbuat dari tiang bambu.

Ha R ves T di dalam G A n D ya aku D :

Pemanenan ikan umumnya dianjurkan setelah satu tahun pemeliharaan. Periode pemeliharaan yang lebih pendek juga dapat dilakukan tergantung pada kondisi kolam dan preferensi ukuran di pasar lokal. Seekor ikan tumbuh hingga ukuran 0,8-1Kg dalam 12 bulan. Ikan mas rumput memiliki tingkat pertumbuhan yang lebih cepat dan mencapai ukuran berat 3Kg dalam dan tahun. Ini berkontribusi sekitar 30% dari total produksi ikan kolam. Hasil terbaru di Pune, menunjukkan rekor baru dalam produksi ikan melalui budidaya ikan komposit. Produksi yang didapat adalah 10, 194 Kg/ha/thn di kolam 0,31 ha dengan 8000 bibit per hektar. Produksi rata-rata 5000Kg/ha/tahun dapat dengan mudah diperoleh dari sistem budidaya. Hal ini jelas menunjukkan potensi produksi ikan melalui budidaya ikan komposit.

Uji coba jaring dilakukan sebulan sekali untuk mengecek pertumbuhan ikan. Ini juga membantu dalam deteksi tepat waktu infeksi parasit jika ada. Jaring juga membantu menyapu dasar tambak yang menghasilkan pelepasan gas-gas berbahaya dari dasar tambak serta pelepasan nutrisi dari tanah dasar.

Pada percobaan polikultur ikan air payau seperti: Chanos perubahan, mugila sefalus, Etroplus suratensis dan Liza parsia produksi 2189Kg/ha/thn diperoleh. Kombinasi dari Chanos dan mugila menunjukkan produksi tertinggi. Chanos menunjukkan pertumbuhan terbaik diikuti oleh mugila .

Hazo A rd S Saya n com P osi T e fi S H cul T kamu e

Budidaya ikan komposit berisiko menghadapi beberapa bahaya insidental, yang dapat menyebabkan kerugian besar kecuali diantisipasi dan diambil tindakan perbaikan tepat waktu untuk mengatasinya. Sebagian besar masalah muncul karena manajemen yang buruk. Bahaya dapat berupa biologis atau masalah pengelolaan atau pemanenan

biologi aku P masalah:

Bahaya biologis muncul dari keberadaan gulma, ikan predator, serangga dan ular di kolam budidaya. Masalah-masalah ini dapat dikendalikan jika langkah-langkah yang memadai diambil sebelum menebar ikan di antara budidaya berturut-turut.

Gulma air, jika ada yang ditemukan di kolam, dapat sangat efektif dikendalikan dengan pengenalan ikan pemakan gulma seperti ikan mas dan Puntius jenis. Ikan predator umum mistus, ompok, Wallago, Notopterus, Oreochromis, gobius, dll. dan ikan kurus, Salmostoma, esomus, barbus, kedutaan, Rasbora, Amblifaringodon, dll., ditemukan di kolam dan bersaing dengan benih ikan mas. Ini harus diberantas selama persiapan kolam. Serangga air seperti kumbang, Sibister , Stemolopus; bug, Belostoma, Anisops dan nimfa lalat naga, dll harus dimusnahkan.

Lainnya seperti ular juga menyebabkan kerusakan yang cukup besar pada tanaman ikan dengan memakan benih. Moluska dalam jumlah besar selalu berdampak buruk pada ikan. Mereka dapat dikendalikan dengan menebar ikan, Pangasius ikan patin di kolam. Mereka memakan moluska dan mengurangi infestasi mereka.

Karena kematangan awal dan perkembangbiakan alami ikan mas, tingkat ikan ini meningkat dan kepadatan penebaran kolam budidaya sangat berubah kecuali beberapa tindakan pencegahan diambil. Karenanya, ikan mas dapat dipanen sebelum mereka benar-benar matang. Jika tidak, gulma air dapat disimpan di sudut-sudut kolam untuk bertelur yang bersifat perekat di alam. Gulma dengan telur menempel dapat dihilangkan dan telur, jika diinginkan, dapat diinkubasi secara terpisah untuk mendapatkan tukik. Dengan ini, petani akan menghindari pembiakan ikan mas di kolam dengan biaya lebih murah dan pada saat yang sama memelihara spwan untuk dijual. Ikan mas biasa, karena sifatnya yang menggali, dapat merusak tanggul dengan membuat lubang di dalamnya. Kepiting juga merusak tanggul. Tilapia adalah pemulia terus menerus, oleh karena itu harus dihindari di kolam.

Alga mekar dengan mikrosistis, Euglena, dll. yang umumnya ditemukan pada bulan-bulan musim panas menyebabkan masalah serius dari oksigen terlarut. Pada siang hari oksigen jenuh dan di malam hari oksigen habis. Metode kimia baik untuk pemberantasan mekar. Memompa air tawar ke dalam kolam pada saat darurat adalah metode yang aman. Sebagian kolam ditumbuhi tanaman rindang seperti Eichornia dan Pistia sehingga dapat mematikan cahaya. Tetapi jika mereka menyebar di kolam lagi, pemberantasan adalah masalah besar.

Bahaya yang paling serius dan umum adalah menipisnya tingkat oksigen di dalam air. Ikan-ikan yang tertekan berenang di permukaan dengan moncong menonjol di atas untuk menelan udara. Laju pertumbuhan ikan sangat terpengaruh dan sering terjadi kematian massal. Ketika ikan muncul ke permukaan untuk menelan udara, petani harus menganginkan air dengan memompa air tawar ke dalam kolam untuk menyelamatkan hasil panen ikannya. Untuk meningkatkan kandungan oksigen dalam air, ia harus memukul air dengan tongkat bambu. Penambahan KMnO4 (1ppm) meningkatkan kandungan oksigen terlarut air dan juga bertindak sebagai desinfektan. Kapur cepat atau kapur sirih dengan kecepatan 200 Kg/ha juga harus ditambahkan untuk melawan efek buruk dari pembusukan bahan organik. Jaring tarik berulang memfasilitasi pelepasan gas yang mengganggu. Memotong batang pisang juga memiliki efek menguntungkan pada ikan dalam keadaan di atas.

Dalam budidaya ikan komposit, pertumbuhan bahan tanaman yang berlebihan ditebang oleh ikan mas perak dan ikan mas rumput yang masing-masing hidup dari fitoplakton dan gulma air. Kehadiran ikan mas dan ikan mas juga sangat mengurangi efek buruk yang diciptakan oleh penipisan oksigen karena bahan organik yang membusuk karena mereka memakannya. Banyak kolam di desa yang sepenuhnya dinaungi oleh pohon-pohon besar dan bambu, dan ini sangat mengganggu proses fotosintesis di kolam dengan mengurangi sinar matahari. Situasi menjadi jauh lebih serius selama hari-hari berangin dan terutama selama musim semi ketika daun-daun yang jatuh mulai membusuk di dalam air.

Itu selalu diinginkan untuk menghindari pohon dan bambu sebanyak mungkin di tepi kolam. Tanaman pisang bisa ditanam di gili, kecuali di sisi timur agar sinar matahari tidak terpotong oleh ini di pagi hari. Perkebunan pisang tidak boleh dibiarkan rimbun. Varietas kerdil paling cocok untuk tujuan ini. Penyakit ikan adalah masalah lain di kolam budidaya, penyakit ikan dibahas secara rinci dalam bab-VI, G.

M A nagem e n T P masalah:

Selalu perlu untuk menyimpan setidaknya 1 m air di kolam. Kekeringan yang parah sangat mempengaruhi tingkat air di kolam tadah hujan. Sumber pasokan air alternatif seperti sumur tabung dapat membantu dalam memerangi kekeringan. Hujan deras dan banjir menyebabkan kerusakan serius pada kolam dengan mematahkan tanggul atau membanjiri mereka. Dalam kedua kasus, ikan melarikan diri dari kolam. Tindakan sementara seperti perlindungan tanggul atau penyaringan kolam dapat dilakukan. Kadang-kadang, lebih baik memanen ikan bahkan sebelum situasi seperti itu ditemui. Perburuan adalah masalah lain dalam budidaya ikan. Selain mempekerjakan penjaga, bahan tanaman lebat dapat dimasukkan ke dalam kolam untuk mencegah jaring mudah. Anjing penjaga yang terlatih terbukti lebih efektif dan ekonomis dalam mengendalikan perburuan liar.

panen T di dalam G P masalah:

Sangat penting untuk memanen stok ikan sebelum tingkat pertumbuhan ikan untuk input yang diinvestasikan seperti pakan dan pupuk mulai menurun. Nilai gizi air untuk memberi makan ikan tidak dapat ditingkatkan setelah tahap tertentu. Pertumbuhan diferensial mempersulit program pemanenan, dan , disarankan agar, jika waktu panen sangat sulit untuk disinkronkan dalam komunitas ikan bahkan setelah manipulasi rasio dan kepadatan penebaran yang hati-hati, pemanenan sebagian dapat dilakukan.

Harga jual ikan kurang dari satu Kg agak lebih murah dibandingkan dengan ikan yang beratnya lebih dari satu Kg atau lebih. Hal ini juga mempengaruhi program panen, dan, untuk mendapatkan keuntungan lebih penting untuk mempertimbangkan aspek ini juga sebelum panen.

Keterkaitan antar spesies yang dibudidayakan juga perlu diperhatikan secara serius. Pengumpan dasar hidup sebagian dari kotoran ikan mas rumput dan pemindahan ikan mas rumput yang tidak direncanakan akan, pada gilirannya, mempengaruhi pertumbuhan pengumpan bawah, sedangkan jika hanya pengumpan dasar yang dipanen seluruhnya, kotoran ikan mas yang berlebihan dapat mencemari air.

Bahaya yang terlibat dalam budidaya ikan komposit dapat dikelola dan dapat dicegah secara efektif dengan tindakan pencegahan dan kewaspadaan yang tepat.

Ekonomis S

Ekonomi produksi ikan dalam budidaya ikan komposit bervariasi dari satu tempat ke tempat lain tergantung pada harga lahan, kondisi tanah, biaya tenaga kerja, biaya bahan konstruksi pertanian dan transportasi. Mungkin tidak mungkin untuk menggeneralisasi sifat produksi ikan dan fungsi biayanya. Di atas semua itu sangat menguntungkan.

Di dalam T misalnya R makan D F adalah H fa R mi n G

Kepemilikan tanah masyarakat pedesaan kecil dan terfragmentasi, dan teknologi produksi skala besar modern dengan kebutuhan input yang tinggi tidak menawarkan solusi nyata untuk masalah pendapatan rendah dan produktivitas rendah mereka. Para petani kecil dan marjinal ini memiliki ternak berupa sapi, babi, kawanan kecil bebek atau anak ayam, lahan pertanian dan kelebihan tenaga kerja keluarga. Dengan masalah dan sumber daya ini, upaya yang dilakukan untuk mengembangkan sistem pertanian biaya rendah berdasarkan prinsip-prinsip produktivitas pemanfaatan limbah pertanian, sumber daya yang tersedia dan tenaga kerja. Upaya penelitian telah menghasilkan pengembangan sistem pertanian terpadu, melibatkan budidaya ikan, peternakan dan pertanian. Paket praktik pertanian terpadu telah dikembangkan dan diverifikasi secara ekstensif untuk kelayakan ekonomi dan kelayakan di tingkat petani.

Ikan dapat dipelihara di sawah, ladang gandum dan kelapa. berbuah, tanaman berbunga dan tanaman sayuran dibudidayakan di tanggul. Azolla – budidaya ikan juga menjadi populer.

Bantalan D kamu - C kamu M - F Saya S H C kamu ltur e

Budidaya padi – cum – ikan merupakan usaha yang menjanjikan dan jika masukan pengelolaan terbaik diberikan, hal itu dapat memberikan keuntungan yang besar bagi para petani. Sistem ini bekerja dengan baik di sawah yang banyak dialiri sungai atau danau. India memiliki sistem tradisional budidaya padi – cum – ikan yang sebagian besar dipraktikkan di negara bagian pesisir Kerala dan Benggala Barat. Namun, Padi – cum – budidaya ikan di sawah air tawar belum populer meskipun potensi yang cukup besar ada di India. Di India, meskipun enam juta hektar ditanami padi, hanya 0,03 persennya sekarang digunakan untuk budidaya padi – ikan. Alasan untuk ini sebagian besar disebabkan oleh perubahan praktik budidaya padi dari metode tradisional ke metode yang lebih maju yang melibatkan varietas unggul dan penggunaan pestisida secara progresif. Penanaman ganda semakin meningkatkan hasil dari lahan pertanian tersebut, sehingga menggeser penekanan dari pertanian terpadu tersebut.

Budaya terpadu ini membutuhkan air yang melimpah dan daerah dataran rendah paling cocok. Jutaan hektar penyebaran air paling nyaman untuk budaya terpadu. Dalam sistem ini, dua tanaman padi dan satu tanaman ikan dapat dibudidayakan dalam setahun.

Sawah yang tergenang air merupakan habitat alami yang ideal bagi berbagai jenis ikan. Ikan di sawah menghasilkan peningkatan hasil gabah yang bervariasi antara 5 – 15 persen. Ikan mengkonsumsi gulma dalam jumlah besar, cacing, serangga, larva dan alga, yang secara langsung atau tidak langsung merugikan padi. Ikan juga membantu dalam membuat bahan pemupukan lebih mudah tersedia untuk padi.

Keuntungan dari budidaya padi – cum-ikan

Padi – cum – Budidaya ikan memiliki beberapa keunggulan seperti:

1. Pemanfaatan lahan secara ekonomis

2. Sedikit tenaga kerja ekstra diperlukan

3. Menghemat biaya tenaga kerja untuk penyiangan dan pemberian makanan tambahan

4. Peningkatan hasil padi sebesar 5 -15%, yang disebabkan oleh pemupukan organik tidak langsung melalui kotoran ikan

5. Produksi ikan dari sawah

6. Penghasilan tambahan dan hasil panen yang beragam seperti ikan dan beras dari air dan bawang merah, kacang dan ubi jalar melalui budidaya di pematang

7. Kontrol ikan ganggang berfilamen yang tidak diinginkan yang mungkin bersaing untuk nutrisi

8. Ikan nila dan ikan mas mengendalikan gulma air yang tidak diinginkan yang dapat mengurangi hasil padi hingga 50%

9. Hama serangga padi seperti penggerek batang dikendalikan oleh ikan yang memakannya terutama oleh murrel dan lele

10. Ikan memakan inang perantara air seperti malaria yang menyebabkan jentik nyamuk, dengan demikian mengendalikan penyakit bom air manusia

11. Sawah juga dapat berfungsi sebagai pembibitan ikan untuk menanam benih menjadi benih. Bibit, jika dan ketika diproduksi dalam jumlah besar, dapat dijual atau ditebar di kolam produksi untuk mendapatkan hasil ikan yang lebih baik di bawah budidaya ikan komposit.

Mempertimbangkan kelebihan-kelebihan tersebut, sangat penting untuk memperluas budidaya ikan di sawah negara kita.

Duduk e Pilih Saya pada :

Curah hujan sekitar 80 cm adalah optimal untuk sistem terpadu ini. Bidang yang memiliki kontur yang hampir seragam dan kapasitas retensi air yang tinggi lebih disukai. Tabel air tanah dan sistem drainase merupakan faktor penting yang harus dipertimbangkan untuk pemilihan lokasi.

T kamu pe S Hai F padd kamu bidang S FO R mengintegrasikan D sistem :

Persiapan petak sawah dapat bervariasi sesuai dengan kontur tanah dan topografi.

1 . Perimeter R Tipe : Area tanam padi dapat ditempatkan di tengah dengan elevasi sedang dan tanah miring di semua sisi ke dalam parit perimeter untuk memudahkan drainase.

2 . C ent R A aku P Hai n D T yp e : Area tanam padi berada di pinggiran dengan kemiringan ke arah tengah (Gbr. 8.1)

fi S H C kamu m-p A DD kamu india e terima kasih e D F iel D

3 . Nanti A aku T rench T ya: Parit dibuat pada salah satu atau kedua sisi lateral dari lahan sawah dengan kemiringan sedang.

Misalkan luas sistem terintegrasi adalah 100 m X 100 m-yaitu, 1 ha. Luas areal yang akan dimanfaatkan untuk sawah harus 82 m X 82 m -yaitu, 0,67 ha. Areal yang akan dimanfaatkan untuk budidaya ikan harus berukuran 6m X 352 m -yaitu, 0,21 ha (4 sisi). Luas tanggul harus berukuran 3m X 388 m – 0,12 ha. dan luas tanaman buah harus 1m X 388 m -yaitu, 0,04 ha. Ini adalah rasio yang ideal untuk persiapan sistem yang terintegrasi.

padd kamu budaya v atio n

1 . Rico e bervariasi e mengikat S menggunakan D FO R mengintegrasikan D S sistem : Varietas air dalam yang paling menjanjikan dipilih untuk negara bagian yang berbeda adalah PLA-2 ( Andhra Pradesh ) , IB-1, IB-2 , AR-1, 353-146 ( Assam ) , BR-14, Jisurya ( Punjab ), AR 61-25B, PTB-16 ( Kerala ) , TNR-1, TNR (Tamilnadu), Jalamagan (Uttar Pradesh), Jaladhi-1, Jaladhi-2 (Benggala Barat) dan Thoddabi (Manipur). Bibit padi varietas Manoharsali digunakan di sawah tempat ikan dipelihara.

Petak sawah harus sudah siap pada bulan April – Mei. Setelah menyiapkan plot, varietas padi air dalam dipilih untuk disemai langsung di daerah dataran rendah setelah hujan pertama hujan monsun.

2 . F e R tiliz A tio n S ched kamu le : Petak sawah diperkaya dengan pupuk kandang atau kompos pada 30 t / ha dengan dosis dasar. Penyerapan unsur hara pada padi di perairan dalam sangat tinggi, takaran pupuk anorganik yang dianjurkan adalah nitrogen dan kalium 60 kg/ha. Nitrogen dan posfor harus diterapkan dalam tiga fase, saat menanam, inisiasi pembungaan dan pembungaan.

3 . Hama Saya asam e kita e : Budidaya padi – cum – ikan tidak banyak berkembang karena penggunaan pestisida di sawah untuk pemberantasan hama yang berbeda dan ini beracun bagi ikan. Untuk mengatasi masalah pestisida, sistem pengendalian hama terpadu dapat diperkenalkan dan pestisida yang kurang beracun bagi ikan dapat digunakan dalam dosis rendah, jika benar-benar diperlukan. Pestisida seperti karbomat dan organofosfat selektif hanya boleh digunakan. Furadon bila digunakan 7 hari sebelum penebaran ikan terbukti aman.

Selama masa panen Kharif, pestisida harus dihindari. Panen tanaman Kharif berlangsung pada bulan November – Desember. Hasil panen pada tanaman ini adalah 800 – 1200 kg/ha.

Selama panen Rabi, pestisida dapat digunakan sesuai dengan kebutuhan. Sebelum menambahkan pestisida ke padi, tanggul parit harus diperbesar agar pestisida tidak masuk ke dalam parit. Hasil panen padi ini adalah 4000 – 5000 kg/ha.

Berbudaya jenis dari ikan di dalam Nasi bidang: Jenis ikan yang dapat dibudidayakan di persawahan harus mampu mentolerir perairan dangkal (kedalaman>15 cm), suhu tinggi (hingga 350 C), oksigen terlarut rendah dan kekeruhan tinggi. Spesies seperti Labeo rohita, Catla catla, HAI R e Hai ch romi M Hai S S NS B ic kamu S , A tidak B A S te S tu D di dalam e kita , C aku A R ia S B A tr A ch kamu S , Clarias makrosefalus, Channa striatus, Channa tanda baca, Channa marulius, Heteropneuste fosil, Chanos perubahan, Terlambat calcarifer dan mugila sp telah banyak dibudidayakan di sawah. Ikan mas kecil seperti Labeo bata, Labeo calbasu, Puntius japanicus, P.sarana, dll juga bisa dibudidayakan di sawah. Budidaya udang air tawar Macrobrachium rosenbergii dapat dilakukan di lahan persawahan. Pemilihan spesies terutama tergantung pada kedalaman dan durasi air di sawah dan juga sifat varietas padi yang digunakan.

Mayor Hai R sy S waktu S Hai F P A DD kamu - cu M - F Saya S H C kamu lture :

Dua sistem utama budidaya padi-cum-ikan dapat dilakukan di daerah air tawar:

  1. Budaya padi-cum-ikan mas
  2. Budidaya ikan yang bernafas dengan padi-cum-air

1 . P A D D kamu - C kamu M - C A R P cu aku T kamu R e : Ikan mas besar atau kecil dibudidayakan di sawah. Pada bulan Juli ketika air hujan mulai menumpuk di petak sawah dan kedalaman air di jalur air menjadi cukup, ikan yang ditebar 4000 – 6000 / ha. Rasio spesies mungkin 25% pengumpan permukaan, sebaiknya catla, 30% makan kolom, rohu dan 45% bottom feeder mrigal atau ikan mas.

2 . Padi - cum-ai R B reating fis H budaya : Air breathing cat fish like singhi and magur are cultured in paddy fields in most rice grown areas. The water logged condition in paddy fields is very conducive for these fast growing air breathing cat fish. Equal number of magur and singhi fingerlings are to be stocked at one fish/m2. Channa species are also good for this integrated system.

fi S H C kamu ltur e Saya n R ic e bidang S :

Fish culture in rice fields may be attempted in two ways, yaitu simultaneous culture and rotation culture.

S imulta n kamu S cu aku tu R e : Rice and fish are cultivated together in rice plots, and this is known as simultaneous culture. Rice fields of 0.1ha area may be economical. Normally four rice plots of 250 m2 (25 X 10 m) each may be formed in such an area. In each plot, a ditch of 0.75 m width and 0.5 m depth is dug. The dykes enclosing rice plots may be 0.3 m high and 0.3 m wide and strengthened by embedding straw. The ditches serve not only as a refuse when the fish are not foraging among rice plants, but also serve as capture channels in which the fish collect when water level goes down. The water depth of the rice plot may vary from 5 – 25 cm depending on the type of rice and size and species of fish to be cultured.

Five days after transplantation of rice, fish fry are stocked at the rate of 5000/ha or fingerlings at the rate of 2000/ha. The stocking density can be doubled if supplemental feed is given daily. The simultaneous culture has many advantages, which are mentioned under the heading advantages of paddy-cum-fish culture. The simultaneous fish – rice culture may have few limitations, Suka

  1. use of agrochemicals is often not feasible
  2. maintaining high water level may not be always possible, considering the size and growth of fish.
  3. fish like grass carp may feed on rice seedling, dan
  4. fish like common carp and tilapia may uproot the rice seedlings. Namun, these constraints may be overcome through judicious management.

Membusuk A tiona aku budaya ulang Hai F ri C e NS D F Saya NS :

In this system fish and rice are cultivated alternately. The rice field is converted into a temporary fish pond after the harvest. This practice is favoured over the simultaneous culture practice as it permits the use of insecticides and herbicides for rice production. A greater water depth up to 60 cm can be maintained throughout the fish culture period.

One or two weeks after rice harvest, the field is prepared for fish culture. The stocking densities of fry or fingerlings for this practice could be 20, 000/ha and 6, 000/ha respectively. Fish yield could exceed the income from rice in the rotational culture.

Fis H C kamu ltu R e :

The weeds are removed manually in trenches or paddy fields. Predatory and weed fishes have to be removed either by netting or by dewatering. Mohua oil cake may be applied at 250 ppm to eradicate the predatory and weed fishes.

After clearing the weeds and predators the fertilizers are to be applied. Cow dung at the rate of 5000 kg/ha, ammonium sulphate at 70 kg/ha and single superphosphate at 50 kg/ha are applied in equal instalments during the rearing period.

Stocking density is different in simultaneous and rotational culture practices, and are also mentioned under the respective headings above. The fishes are provided with supplementary food consisting of rice bran and groundnut oil cake in the ratio 1:1 at 5% body weight of fishes in paddy-cum-carp culture. In paddy-cum-air breathing culture, a mixture of fish meal and rice bran in the ratio 1:2 is provided at the rate of 5% body weight of fishes.

After harvesting paddy when plots get dried up gradually, the fishes take shelter in the water way. Partial harvesting by drag netting starts soon after the Kharif season and fishes that attain maximum size are taken out at fortnightly intervals. At the end of preparation when the water in the waterway is used up for irrigation of the Rabi paddy, the remaining fishes are hand picked. The fish yield varies from 700 -1000 kg/ha in this integrated system. Survival rate of fish is less than 60 %. Survival rate is maximum in renovated paddy plots when compared to fish culture in ordinary paddy plots.

The dykes constructed for this system may be used for growing vegetables and other fruit bearing plants like papaya and banana to generate high returns from this system. The fish can also be cultured along with wheat. This practice is found in Madhya Pradesh.. Like paddy fields, the same fish can also be cultured in wheat fields. The management practices are similar to fish – cum – paddy culture. Fish can also be cultured along with coconut plants.

Fis H C kamu M ho R ticu aku tur e

Considerable area of an aquaculture farm is available in the form of dykes some of which is used for normal farm activities, the rest remaining fallow round-the -year infested with deep-rooted terrestrial weeds. The menacing growth of these weeds causes inconvenience in routine farm activities besides necessitating recurring expenditure on weed control. This adversely affects the economy of aqua-farming which could be considerably improved through judicious use of dykes for production of vegetables and fish feed. An integrated horti-agri-aquaculture farming approach leads to better management of resources with higher returns.

Several varieties of winter vegetables (cabbage, kol bunga, tomat, terung, ketumbar, lobak, lobak, kacang polong, bayam, fenugreek, bottle gourd, potato and onion) and summer vegetables (amaranth, water-bind weed, pepaya, okra, labu pahit, sponge gourd, sweet gourd, labu punggungan, chilly, ginger and turmeric) can be cultivated depending upon the size, shape and condition of the dykes.

S uita B aku e tanah pertanian Saya n G P tindakan Saya ce S Hai n pon D dy k es :

Intensive vegetable cultivation may be carried out on broad dykes (4m and above) on which frequent ploughing and irrigation can be done without damaging the dykes. Ideal dyke management involves utilisation of the middle portion of the dyke covering about two-thirds of the total area for intensive vegetable cultivation and the rest one-third area along the length of the periphery through papaya cultivation keeping sufficient space on either side for netting operations. Intensive cultivation of water-bind weed, Indian spinach, lobak, amaranth, okra, sweet gourd, kol bunga, kubis, bayam, kentang, coriander and papaya on pond dyke adopting the practice of multiple cropping with single or mixed crops round the year can yield 65 to 75 that year. Semi-intensive farming can be done on pond dykes (2 to 4 m wide) where frequent ploughing, regular irrigation and deweeding are not possible. Crops of longer duration like beans, labu punggungan, okra, pepaya, tomat, terung, mustard and chilli are found suitable for such dykes.

Extensive cultivation may be practised on pond dykes (up to 2 m wide) where ploughing and irrigation by mechanical means are not at all possible. Such dykes can be used for cultivation of sponge gourd, sweet gourd, bottle gourd, citrus and papaya after initial cleaning, deweeding and digging small pits along the length of the dykes. Extensive cultivation of ginger and turmeric is suitable for shaded dykes.

C A R P P roducti Hai n kamu dosa G aku eaf kamu v e G etable S NS D v egetabl e S w astes :

A huge quantity of cabbage, kol bunga, turnip and radish leaves are thrown away during harvest. These can be profitably utilised as supplementary feed for grass carp. Selama musim dingin, grass carp can be fed with turnip, cabbage and cauliflower leaves, while in summer, amaranth and water-bind weed through fortnightly clipping may be fed as supplementary feed for rearing of grass carp. Monoculture of grass carp, at stocking density of 1000 fish/ha, fed on vegetable leaves alone, fetches an average production of about 2 t/ha/yr. while mixed culture of grass carp along with rohu, catla and mrigal (50:15:20:15) at a density 5000 fish/ha yields an average production of 3 t/ha/yr.

Integrated farming of dairy, piggery and poultry has been traditionally practiced in many parts of the world with a varying degree of success. Di India, this system of freshwater fish culture has assumed significance presently in view of its potential role in recycling of organic wastes and integrated rural development. Besides the cattle farm wastes, which have been used traditionally as manure for fish pond, considerable quantities of wastes from poultry, duckery, piggery and sheep farming are available. The later are much richer in nutrients than cattle wastes, and hence smaller quantities would go a long way to increase fish production.

Azola - akuakultur

The significance of biological nitrogen fixation in aquatic ecosystems has brought out the utility of biofertilization through application of heterocystous blue-green algae and related members. This assumes great importance in view of the increasing costs of chemical fertilisers and associated energy inputs that are becoming scarce as also long-term environmental management. Azola, a free-floating aquatic fem fixing atmospheric nitrogen through the cyanobacterium, Anabaena azolla, present in its dorsal leaves, is one of the potential nitrogenous biofertilizers. Its high nitrogen-fixing capacity, rapid multiplication as also decomposition rates resulting in quick nutrient release have made it an ideal nutrient input in fanning systems.

Arolla is a hetrosporous fern belonging to the family azollaceae with seven living and twenty extinct species. Based on the morphology of reproductive organs, the living species are grouped into two subgenera. viz., Euazolla (Azolla caroliniana, A.filiculoides, A. microphylla, A.mexicana. A., rubra ) and Rhizosperma (A.pinnata, A.niloiica ). Proliferation of Azola Ms basically through vegetative propagation but sexual reproduction occurs during temporary adverse environmental conditions with the production of both microsporocarp and megasporocarp.

Pote n tial S Hai F Azoll A

Meskipun Azola is capable of absorbing nitrogen from its environment, Anabaena meets the entire nitrogen requirements of Azolla-Anabaena association. The mean daily nitrogen fixing rates of a developed Azola mat are in the range of 1.02 – 2.6 kg/ ha and a comparison with the process of industrial production of nitrogenous fertilisers would indicate the efficacy of biological nitrogen fixation. While the latter carried out by the enzyme nitrogenase, operates with maximum efficacy at 30°C and 0.1 atm. The fertiliser industry requires reaction of nitrogen and hydrogen to form ammonia at temperature and pressure as high as 300°C and 200 – 1000 atm respectively.

The normal doubling time dari Azola plants is three days and one kilogram of phosphorus applied result in 4 – 5 kilograms of nitrogen through Azola, yaitu., about 1.5 – 2.0 t of fresh biomass. It may be mentioned that Azola can survive in a wide pH range of 3.5 to 10.0 with an optimum of 4.5 – 7.0 and withstand salinities of up to 10 ppt. With a dry weight range of 4.8 – 7.1 % among different species, the nitrogen and carbon contents are in the ranges of 1.96 – 5.30 % and 41.5 -45.3 % respectively. The percentage ranges of other constituents on dry weight basis are crude protein 13.0 -30.0, crude fat 4.4 – 6.3, cellulose 5.6 -15.2, hemicellulose 9.8 -17.9, lignin 9.3 – 34.8 and ash 9.7 – 23. 8. The ranges of elemental composition are phosphorus 0.10 – 1.59 %, potassium 0.31 – 5.97%, calcium 0.45 – 1.70 %, magnesium 0.22 – 0.66 % and sulphur 0.22 – 0.73%. Added to these are its high rates of decomposition with mean daily loss rates of 1.36 – 4.57% of the initial weight and nitrogen release rate of 1.25% which make Azola a potential biofertilizer in aquaculture systems.

C kamu ltivati Hai n Hai F Azoll A

While Azola is grown either as a green manure before rice transplantation or as a dual crop in agriculture. It is necessary to cultivate Azolla. separately for aquaculture and resort to periodic application in fish ponds. A system suitable for such cultivation, comprises a network of earthen raceways (10.0 X 1.5 X 0.3 m) with facilities for water supply and drainage. The operation in each raceway consists of application dari Azola inoculum (6 kg), phosphatic fertiliser (50 g single superphosphate) and pesticide (carbofuron dip for inoculum at 1 – 2 ppm), maintenance of water depth of 5 – 10 cm and harvesting 18 – 24 kg in a week’s time. The maintenance includes periodic removal of superficial earth layers with organic accumulation, dyke maintenance, application of bleaching powder for crab menace and algal blooms, etc. A unit of 0.1 ha area that can hold about 50 raceways is suitable for a family to be taken up as cottage industry in rural areas. Azola can be cultured in puddles, drainage and shallow water stretches, at the outlets of ponds and tanks and hence prime agricultural land need not be used. It is advisable to set up central Azola culture units to serve for the community in the villages.

Aplikasi aku ica T ion S Saya n fi S H F A rmi n G

Azoll A is useful in aquaculture practices primarily as a nitrogenous biofertilizer. Its high decomposition rates also make it a suitable substrate for enriching the detritus food chain or for microbial processing such as composting prior to application in ponds.

Lebih jauh, Azola can serve as an ingredient of supplementary feeds and as forage for grass carp too. Studies made on Azola biofertilization have shown that the nutrient requirements of composite carp culture could be met through aplikasi Azola alone at the rate of 40 t/ha/yr providing over 100 kg of nitrogen, 25 kg of phosphorus and 90 kg of potassium in addition to about 1500 kg of organic matter. This amounts to total substitution of chemical fertilisers along with environmental upkeep through organic manuring.

A zoll A is a new aquaculture input with high potentials in both fertilisation and tropic enrichment. Studies are also being made with regard to reduction of land requirement and production costs through in situ cultivation in shallow zones or floating platforms in fish ponds, use of organic inputs like biogas slurry, etc. The costs may be reduced further if the Azola culture system is managed by the farmer or by his household members. The technology would pave the way for economic, eco-friendly and environment conserving fertilisation in aquaculture.

Saya nte G rat e D F ish - air mani - pou aku tr kamu fa R min G

Much attention is being given for the development of poultry farming in India and with improved scientific management practices, poultry has now become a popular rural enterprise in different states of the country. Apart from eggs and chicken, poultry also yields manure, which has high fertilizer value. The production of poultry dropping in India is estimated to be about 1, 300 thousand tons, which is about 390 metric tones of protein. Utilization of this huge resource as manure in aquaculture will definitely afford better conversion than agriculture.

Po n D ibu n agem e tidak :

It includes clearance of aquatic weeds, unwanted fishes and insects, which is discussed in detail in the stocking pond management chapter 5.

A . S toc k ing :

The application of poultry manuring in the pond provides a nutrient base for dense bloom of phytoplankton, particularly nanoplankton which helps in intense zooplankton development. The zooplankton have an additional food source in the form of bacteria which thrive on the organic fraction of the added poultry dung. Dengan demikian, indicates the need for stocking phytoplanktophagous and zooplanktophagous fishes in the pond. In addition to phytoplankton and zooplankton, there is a high production of detritus at the pond bottom, which provides the substrate for colonization of micro-organisms and other benthic fauna especially the chironomid larvae. A stocking emphasis, karena itu, must be placed on bottom feeders. Another addition will be macro-vegetation feeder grass carp, yang, tanpa adanya makrofita, can be fed on green cattle fodder grown on the pond embankments. The semi digested excreta of this fish forms the food of bottom feeders.

For exploitation of the above food resources, polyculture of three Indian major carps and three exotic carps is taken up in fish cum poultry ponds. The pond is stocked after the pond water gets properly detoxified. The stocking rates vary from 8000 – 8500 fingerlings/ha and a species ratio of 40 % surface feeders, 20 % of column feeders, 30 % bottom feeders and 10-20 % weedy feeders are preferred for high fish yields. Mixed culture of only Indian major carps can be taken up with a species ratio of 40 % surface, 30 % column and 30 % bottom feeders.

In the northern and north – western states of India, the ponds should be stocked in the month of March and harvested in the month of October – November, due to severe winter, which affect the growth of fishes. Di selatan, coastal and north – eastern states of India, where the winter season is mild, the ponds should be stocked in June -September months and harvested after rearing the fish for 12 months.

B . Kita e Hai F P Hai kamu aku T R kamu li T T e R A S ibu n kamu R e : The fully built up deep litter removed from the poultry farm is added to fish pond as manure. Two methods are adopted in recycling the poultry manure for fish farming.

1. The poultry droppings from the poultry farms is collected, stored it in suitable places and is applied in the ponds at regular instalments. This is applied to the pond at the rate of 50 Kg/ha/ day every morning after sunrise. The application of litter is deffered on the days when algal bloom appear in the pond. This method of manurial application is controlled.

2. Constructing the poultry housing structure partially covering the fish tank and directly recycling the dropping for fish culture. Direct recycling and excess manure however, cause decomposition and depletion of oxygen leading to fish mortality.

It has been estimated that one ton of deep litter fertilizer is produced by 30-40 birds in a year. As such 500 birds with 450 kg as total live weight may produce wet manure of about 25 Kg/day, which is adequate for a hectare of water area under polyculture. The fully built up deep litter contain 3% nitrogen, 2% phosphate and 2% potash. The built up deep litter is also available in large poultry farms. The farmers who do not have the facilities for keeping poultry birds can purchase poultry litter and apply it in their farms.

Aquatic weeds are provided for the grass carp. Periodical netting is done to check the growth of fish. If the algal blooms are found, those should be controlled in the ponds. Fish health should be checked and treat the diseased fishes.

Pou aku tr kamu hu S pita R kamu pra C tice S :

The egg and chicken production in poultry raising depends upon multifarious factors such as breed, variety and strain of birds, good housing arrangement, blanched feeding, proper health care and other management measures which go a long way in achieving the optimum egg and flesh production.

A . Ho kamu si n G Hai F B saya D S :

In integrated fish-cum-poultry farming the birds are kept under intensive system. The birds are confined to the house entirely. The intensive system is further of two types – cage and deep litter system. The deep litter system is preferred over the cage system due to higher manurial values of the built up deep litter.

In deep litter system 250 birds are kept and the floor is covered with litter. Dry organic material like chopped straw, daun kering, jerami, kulit kacang tanah, broken maize stalk, saw dust , etc. is used to cover the floor upto a depth of about 6 inches. The birds are then kept over this litter and a space of about 0.3 – 0.4 square meter per bird is provided. The litter is regularly stirred for aeration and lime used to keep it dry and hygienic. In about 2 months time it become deep litter, and in about 10 months time it becomes fully built up litter. This can be used as fertilizer in the fish pond.

The fowls which are proven for their ability to produce more and large eggs as in the case of layers, or rapid body weight gains is in the case of broilers are selected along with fish.

The poultry birds under deep litter system should be fed regularly with balanced feed according to their age. Grower mash is provided to the birds during the age of      9-20 weeks at a rate of 50-70 gm/bird/day, whereas layer mash is provided to the birds above 20 weeks at a rate of 80-120 gm/bird/day. The feed is provided to the birds in feed hoppers to avoid wastage and keeping the house in proper hygienic conditions.

B . E G G berbaring Saya ng :

Each pen of laying birds is provided with nest boxes for laying eggs. Empty kerosene tins make excellent nest boxes. One nest should be provided for 5-6 birds. Egg production commences at the age of 22 weeks and then gradually decline. The birds are usually kept as layers upto the age of 18 months. Each bird lays about 200 eggs/yr.

C . H A rves T ing :

Some fish attain marketable size within a few months. Keeping in view the size of the fish, prevailing rate and demand of the fish in the local markets, partial harvesting of table size fish is done. After harvesting partially, the pond should be restocked with the same species and the same number of fingerlings depending upon the availability of the fish seed. Final harvesting is done after 12 months of rearing. Fish yield ranging from 3500-4000 Kg/ha/yr and 2000-2600 Kg/ha/yr are generally obtained with 6 species and 3 species stocking respectively.

Eggs are collected daily in the morning and evening. Every bird lays about 200 eggs/year. The birds are sold after 18 months of rearing as the egg laying capacity of these birds decreases after that period. Pigs can be used along with fish and poultry in integrated culture in a two-tier system. Chick droppings form direct food source for the pigs, which finally fertilise the fish pond. Depending on the size of the fish ponds and their manure requirements, such a system can either be built on the bund dividing two fish ponds or on the dry-side of the bund. The upper panel is occupied by chicks and the lower by pigs.

Saya nteg R makan D F Saya sh-c kamu m-du C k tanah pertanian Saya n G

Integrated fish-cum-duck farming is the most common practice in China and is now developing in India, especially in West Bengal, Assam, Tamilnadu, Andhra Pradesh, Kerala, Bihar, etc. As ducks use both land and water as a habitat, their integration with the fish is to utilise the mutual benefits of a biological relationship. It is not only useful for fattening the ducks but also beneficial to fish farming by providing more organic manures to fish. It is apparent that fish cum duck integration could result in a good economic efficiency of fish farms.

The ducks feed on organisms from the pond such as larvae of aquatic insects, tadpoles, moluska, aquatic weeds, dll., which do not form the food of the stocked fish. The duck droppings act as an excellent pond fertilizer and the dabbling of ducks at the pond bottom in search of food, releases nutrients from the soil which enhances the pond productivity and consequently increases fish production. The ducks get clean and healthy environments to live in and quality natural food from the pond for their growth. German farmer Probst (1934) for the first time, conducted experiments on integrated fish-cum-duck farming.

Bene F dia S Hai F ikan - cum-duc k jauh M di dalam G

  1. Water surface of ponds can be put into full utilization by duck raising.
  2. Fish ponds provide an excellent environment to ducks which prevent them from infection of parasites.
  3. Ducks feed on preda’tors and help the fingerlings to grow.
  4. Duck raising in fish ponds reduces the demand for protein to 2 – 3 % in duck feeds.
  5. Duck droppings go directly into water providing essential nutrients to increase the biomass of natural food organisms.
  6. The daily waste of duck feed (about 20 – 30 gm/duck) serves as fish feed in ponds or as manure, resulting in higher fish yield.
  7. Manuring is conducted by ducks and homogeneously distributed without any heaping of duck droppings.
  8. By virtue of the digging action of ducks in search of benthos, the nutritional elements of soil get diffused in water and promote plankton production.
  9. Ducks serve as bioaerators as they swim, play and chase in the pond. This disturbance to the surface of the pond facilitates aeration.
  10. The feed efficiency and body weight of ducks increase and the spilt feeds could be utilised by fish.
  11. Survival of ducks raised in fish ponds increases by 5 % due to the clean environment of fish ponds.
  12. Duck droppings and the left over feed of each duck can increase the output offish to 5 Kg/ha.
  13. Ducks keep aquatic plants in check.
  14. No additional land is required for duckery activities.
  15. It results in high production of fish, duck eggs and duck meat in unit time and water area.
  16. It ensures high profit through less investment.

P Hai n D M anagm e tidak :

This is similar to fish-cum-poultry farming. The stocking density can be reduced to 6000 fingerlings/ha. Fingerlings of over 10 cm size are stocked, as the ducks are likely to prey upon the small ones.

kamu S e Hai F D uc k dro P pin G A S ibu n ure :

The ducks are given a free range over the pond surface from 9 to 5 PM, when they distribute their droppings in the whole pond, automatically manuring the pond. The droppings voided at night are collected from the duck house and applied to the pond every morning. Each duck voids between 125 – 150 gm of dropping per day. The stocking density of 200 – 300 ducks/ha gives 10, 000 – 15, 000 kg of droppings and are recycled in one hectare ponds every year. The droppings contain 81 % moisture, 0.91 % nitrogen and 0.38 % phosphate on dry matter basis.

D kamu C k H kamu sba n dar kamu P ras T Es S :

The following three types of farming practice are adopted.

1 . R A isi n G la R G e G kelompok Hai F duc k S Saya n Hai pe n w makan R

This is the grazing type of duck raising. The average number of a group of ducks in the grazing method is about 1000 ducks. The ducks are allowed to graze in large bodies of water like lakes and reservoirs during the day time, but are kept in pens at night. This method is advantageous in large water bodies for promoting fish production.

2 . Rai S di dalam G du C k S Saya n C e ntra aku ise D e n closu res tidak R T H e fis H pon D

A centralised duck shed is constructed in the vicinity of fish ponds with a cemented area of dry and wet runs out side. The average stocking density of duck is about 4 – 6 ducks/sq.m. area. The dry and wet runs are cleaned once a day. After cleaning the duck shed, the waste water is allowed to enter in to the pond.

3 . R A adalah Saya n G D kamu ck S Saya n fi S H po n D

This is the common method of practice. The embankments of the ponds are partly fenced with net to form a wet run. The fenced net is installed 40 – 50 cm above and below the water surface, so as to enable the fish to enter into the wet run while ducks cannot escape under the net.

4 . sel e ct Saya Hai n Hai F du C k S NS D S T ok k di dalam G

The kind of duck to be raised must be chosen with care since all the domesticated races are not productive. The important breeds of Indian ducks are Sylhet Mete and Nageswari. The improved breed, Indian runner, being hardy has been found to be most suitable for this purpose, although they are not as good layers as exotic Khaki Campbell. The number of ducks required for proper manuring of one hectare fish pond is also a matter of consideration. It has been found that 200 – 300 ducks are sufficient to produce manure adequate enough to fertilize a hectare of water area under fish culture. 2 – 4 months old ducklings are kept on the pond after providing them necessary prophylactic medicines as a safeguard against epidemics.

5 . F ee D di dalam G

Ducks in the open water are able to find natural food from the pond but that is not sufficient for their proper growth. A mixture of any standard balanced poultry feed and rice bran in the ratio of 1:2 by weight can be fed to the ducks as supplementary feed at the rate of 100 gm/ bird/day.

The feed is given twice in a day, first in the morning and second in the evening. The feed is given either on the pond embankment or in the duck house and the spilled feed is then drained into the pond. Water must be provided in the containers deep enough for the ducks to submerge their bills, along with feed. The ducks are not able to eat without water. Ducks are quite susceptible to afflatoxin contamination, karena itu, mouldy feeds kept for a long time should be avoided. The ground nut oil cake and maize are more susceptible to Aspergilus flavus which causes aflotoxin contamination and may be eliminated from the feed.

6 . Misalnya G layin G

The ducks start laying the eggs after attaining the age of 24 weeks and continue to lay eggs for two years. The ducks lay eggs only at night. It is always better to keep some straw or hay in the corners of the duckhouse for egg laying. The eggs are collected every morning after the ducks are let out of the duck house.

7 . hea aku T H ca ulang

Ducks are subjected to relatively few diseases when compared to poultry. The local variety of ducks are more resistant to diseases than other varieties. Proper sanitation and health care are as important for ducks as for poultry. The transmissible diseases of ducks are duck virus, hepatitis, duck cholera, keel disease, etc. Ducks should be vaccinated for diseases like duck plague. Sick birds can be isolated by listening to the sounds of the birds and by observing any reduction in the daily feed consumption, watery discharges from the eyes and nostrils, sneezing and coughing. The sick birds should be immediately isolated, not allowed to go to the pond and treated with medicines.

8 . Harvesti n G

Keeping in view the demand of the fish in the local market, partial harvesting of the table size fish is done. After harvesting partially, the pond should be restocked with the same species and the same number of fingerlings. Final harvesting is done after 12 months of rearing. Fish yield ranging from 3500 – 4000 Kg/ha/yr and 2000 – 3000 Kg/ha/yr are generally obtained with 6 – species and 3 – species stocking respectively.

The eggs are collected every morning. Setelah dua tahun, ducks can be sold out for flesh in the market. About 18, 000 – 18, 500 eggs and 500 – 600 Kg duck meat are obtained.

Di dalam T egr A te D F ish - air mani - pi G F A rmi n G

The raising of pigs with fish by constructing pig – sties on the pond embankment or near the pond so that the pig wastes are directly drained into the pond or lifted from the pig house and applied to the pond. The pig dung acts as an excellent pond fertilizer, which raises the biological production of the pond, dan ini, pada gilirannya, increases the fish yield. The fish also feed directly on the pig excreta which consists of 70 % digestible feed for the fish. No supplementary fish feed or pond fertilization is required in this integrated system. The expenditure on fish culture is drastically reduced as the pig excreta acts as a substitute for fish feed and pond fertilization which accounts for 60 % of the input cost in the fish culture. This system has a special significance as it can improve the socio-economic status of rural poor, especially the tribal community who traditionally rear pigs.

Bene F dia S Hai F fis H -cum- P Saya G fa R min G

  1. The fish utilize the food spilled by pigs and their excreta which is very rich in nutrients.
  2. The pig dung acts, as a substitute for pond fertilizer and supplementary fish feed, karenanya, the cost of fish production is greatly reduced.
  3. No additional land is required for piggery operations.
  4. Cattle foder required for pigs and grass are grown on the pond embankments.
  5. Pond provides water for washing the pig – sties and pigs.
  6. It results in high production of animal protein per unit area. 7. It ensures high profit through less investment.
  7. The pond muck which gets accumulated at the pond bottom due to constant application of pig dung, can be used as fertilizer for growing vegetables and other crops and cattle foder.

Pon D managem e n T P R actices :

Pond management is very important to get good production of fish. The management techniques like selection of pond, clearance of aquatic weeds and unwanted fish, liming stocking and health care are similar to fish-cum- poultry system.

kamu S e Hai F pi G limbah e A S pupuk :

Pig – sty washings including pig dung, urine and spilled feed are channeled into the pond. Pig dung is applied to the pond every morning. Each pig voids between 500-600 Kg dung/year, which is equivalent to 250-300 Kg/pig/6 months. The excreta voided by 30 – 40 pigs is adequate to fertilize one hectare pond. When the first lot of pigs is disposed off after 6 months, the quantity of excreta going to the pond decreases. This does not affect the fish growth as the organic load in the pond is sufficient to tide over for next 2 months when new piglets grow to give more excreta. Jika kotoran babi tidak mencukupi, kotoran babi, can be collected from other sources and applied to the pond.

Pig dung consists 69 – 71 % moisture, 1.3 – 2 % nitrogen and 0.36 – 0.39 phosphate. The quality and quantity of excreta depends upon the feed provided and the age of the pigs. The application of pig dung is deferred on the days when algal blooms appear.

Pi G hus B andr kamu P R actices :

The factors like breed, strain, and management influence the growth of pigs.

A . Bersama nst R uct Saya Hai n Hai F P Saya G H Hai kamu se : Pig houses with adequate accommodation and all the requirements are essential for the rearing of pigs. The pigs are raised under two systems the open air and indoor systems. A combination of the two is followed in fish cum pig farming system. A single row of pig pens facing the pond is constructed on the pond embankment. An enclosed run is attached to the pen towards the pond so that the pigs get enough air, sinar matahari, exercise and dunging space. The feeding and drinking troughs are also built in the run to keep the pens dry and clean. The gates are provided to the open run only. The floor of the run is cemented and connected via the drainage canal to the pond. A shutter is provided in the drainage canal to stop the flow of wastes to the pond.

The drainage canal is provided with a diversion channel to a pit, di mana, the wastes are stored when the pond is filled with algal bloom. The stored wastes are applied according to necessity.

The height of the pig house should not exceed 1.5 m. The floor of the house must be cemented. The pig house can be constructed with locally available materials. It is advisable to provide 1 – 1.5 square meter space for each pig.

B . S e lectio n Hai F babi : Four types of pigs are available in our country -wild pigs, domesticated pigs or indigenous pigs, exotic pigs and upgraded stock of exotic pigs. The Indian varieties are small sized with a slow growth rate and produce small litters. Its meat is of inferior quality. Two exotic upgraded stock of pigs such as large – White Yorkshire, Middle – White Yorkshire, Berkshire, Hampshire and Hand Race are most suitable for raising with fish culture. These are well known for their quick growth and prolific breeding. They attain slaughter maturity size of 60 – 70 Kg within six months. They give 6 – 12 piglets in every litter. The age at first maturity ranges from 6 – 8 months. Dengan demikian, two crops of exotic and upgraded pigs of six months each, are raised along with one crop of fish which are cultured for one year. 30 – 40 pigs are raised per hectare of water area. About two months old weaned piglets are brought to the pig-sties and fattened for 6 months, when they attain slaughter maturity, are harvested.

C . Makanan : The dietry requirements are similar to the ruminants. The pigs are not allowed to go out of the pig house where they are fed on balanced pig mash of 4 Kg/pig/day. Grasses and green cattle fodder are also provided as food to pigs. To minimize food spoilage and to facilitate proper feeding without scrambling and fighting, it is better to provide feeding troughs. Similar separate troughs are also provided for drinking water. The composition of pig mash is a mixture of 30 Kg rice bran, 15 Kg polished rice, 27 Kg wheat bran, 10 Kg broken rice, 10 Kg groundnut cake, 4 Kg fish meal, 3 Kg mineral mixture and 1 Kg common salt. To reduce quantity of ration and also to reduce the cost, sayuran busuk, especially the rotten potatoes can be mixed with pig mash and fed to pigs after boiling.

D . Healt H peduli : The pigs are hardy animals. They may suffer from diseases like swine fever, wabah babi, swine pox and also infected with round worms, cacing pita, liver flukes, etc. Pig – sties should be washed daily and all the excreta drained and offal into the pond. The pigs are also washed. Disinfectants must be used every week while washing the pig – sites. Piglets and pigs should be vaccinated.

e . Harv e stin G : Fish attain marketable size within a few months due to the availability of natural food in this integrated pond. According to the demand of fish in the local market, partial harvesting is done. After the partial harvest, same number of fingerlings are introduced into the pond as the fish harvested. Final harvesting is done after 12 months of rearing. Fish yield ranging from 6000 – 7000 Kg/ha/yr is obtained. The pigs are sold out after rearing for six months when they attain slaughter maturity and get 4200 – 4500 Kg pig meat.

Saya nteg R makan D F Saya sh-c kamu m-ca T tl e fa R min G

Fish farming by using cattle manure has long been practiced in our country. This promotes the fish-cum-cattle integration and is a common model of integration. Cattle farming can save more fertilizers, cut down fish feeds and increase the income from milk. The fish farmer not only earns money but also can supply both fish, milk and beef to the market.

Pon D managem e n T P R actices :

These practices are similar to poultry or pig or duck integration with fish. Cow dung is used as manure for fish rearing. About 5, 000 -10, 000 Kg/ha can be applied in fish pond in instalments. After cleaning cow sheds, the waste water with cow dung, urine and unused feed, can be drained to the pond. The cow dung promotes the growth of plankton, which is used as food for fish.

C A ttl e H usbandr kamu practi C es :

The cow sheds can be constructed on the embankments of the fish farm or near the fish farm. The locally available material can be used to construct the cow shed. The floor should be cemented. The outlet of the shed is connected to the pond so that the wastes can be drained into the pond.

Cultivable varieties of cows are black and white (milk), Shorthorn (beef), Simmental (milk and beef), Hereford (beef), Charolai (beef), Jersey (milk and beef) and Qincuan draft (beef).

Inte G kecepatan D fis H - C kamu M - praw n cu aku tur e

Through a lot of work has been done on composite fish culture incorporating Indian major carps and exotic carps having different feeding habits, and a considerable production achieved, no large scale polyculture of prawns and fish has been attempted. The culture of the surface and column feeding carps and bottom feeding prawns could be taken up as a polyculture practice in Indian waters to gain maximum yield. In this polyculture system, the culture of carps and freshwater prawns is more common than that of brackish water prawns with other fish.

Pon D pra e peratio n :

The ideal size of the production ponds for polyculture is 0.2 ha. The pond size can go up to 0.1 – 1 ha area and would be conducive for netting, harvesting and other management practices. The optimal depth required is 0.7 – 1.0m, and it can even go upto 1.5 m. This depth is suitable for netting operations. The slope of the wet side bunds may be 1.3 and of the dry side bunds 1.2. Prawns use their appendages to crawl on wet lands during the night, specially during rain. Karena itu, bunds may be kept 1 – 1.5 m wide and 0.5 m. height over the water level to prevent their movement from one pond to another. Drainable ponds may be more convenient and relatively inexpensive for complete harvesting and good management. Draining out water is desirable for water exchange so as to maintain favourable water quality during the culture period, for exposing bottom of ponds to sun and air, and for removal of silt and organic matter for improving the bottom soil. Such ponds having complete water flow or water circulation would enhance the production.

A pplicatio n Hai F lim e NS D F ertilizers :

Depending on the nature of the pond bottom, lime should be administered. Quick lime may be applied at the rate of 1000 Kg/ha. The water usable for the production ponds should have a pH of 7 – 8.5. If the pH of the water goes above 8.5, the same may be stagnated in the ponds for about 2 – 4 weeks prior to stocking with seed. Monthly or installment application of lime is essential to maintain pH, oksigen terlarut, hardness as well as calcium content in the water. If the pH is lower than 6.5, then the growth rate may suffer and moulting of prawns is delayed which may cause disease susceptibility and mortality of the prawns. Prawns utilise calcium from the water for their exoskeleton formation and therefore the calcium level in the water is likely to drop.

As prawns feed mainly on detritus, production ponds intended for monoculture of prawns need not be fertilized. Namun, for growing prawns and carps together, the ponds need to be fertilized just as in composite fish culture ponds. The ponds are first fertilized with organic manure like cowdung at the rate of 10 – 20 t/ha. It is better if a part of this manure is dissolved and added in the pond water 15 days before the release of fish and prawn seeds. The rest is added monthly in equal instalments. The other chemical fertilizers to be added are ammonium sulphate, urea, superphosphate and muriate of potash at the rate of 450, 200, 250 and 40 Kg/ha respectively and are added in equal instalments. Mahua oil cake can also be used as biocide as well as fertilizer at the rate of 200 – 250 ppm.

berhenti C ki n G :

After three weeks of application of lime and fertilizers, quality seed is stocked during the morning hours. It is always better to acclimatise the seed to the pond conditions by keeping them for about 10 – 15 minutes in the pond before release. Sometimes heavy mortality occur due to wide variation in water pH between the pond and seed container. Karena itu, it is always desirable to keep the transport seed for a few hours or even for a day in pond water for acclimatisation. To ensure good survival four week old juvenile prawns and carp fingerlings could be stocked. Soon after release into the pond, prawn seed disperses in different directions and either take shelter at the pond bottom or close to the submerged vegetation.

The stocking density of prawns in polyculture may be reduced to 50% of monoculture, i.e. 15, 000 – 25, 000 juveniles / ha for good growth and production. The size range of 30 – 50 mm is ideal for stocking. The freshly metamorphosed post – larvae are stocked in nursery tanks for a short duration (30 – 45 days) to raise the juveniles of size 30 – 50 mm. This helps to ensure good survival in culture pond and it is possible to have two crops a year with judicious stocking. Stock manipulation through selective harvesting of marketable prawns and restocking of juveniles is also recommended.

Prawns are omnivorous and are bottom feeders. Karena itu, while selecting fish it is better if the bottom feeding common carp, mrigal, kalbasu, nila, etc. are avoided as they compete both for space and feed at the bottom. Compatible fish like catla, roh, ikan mas perak, ikan mas rumput, etc. are recommended for stocking with prawn juveniles. Carps being nonpredatory, competition for space or food does not occur to any noticeable extent. The juveniles or adult prawns do not prey upon or injure the fish. Directly or indirectly, the faecal matter of the fish may serve as a source of food for the prawns. Generally 3000 – 7000 fish seed per hectare is the appropriate stocking density under intensive fish farming. But stocking of carps fingerlings 1500 – 3000/ha is the ideal density for culture with prawn. Juveniles of 30 – 50 mm size are desirable for stocking to get better growth and survival in the pond. Catla, roh, silver carp and grass carp may be stocked in the ratio of 2 :1 :2 :1.

F Hai Hai D NS D fe e ding :

Natural feed like plankton are available through biological process. Pond fertilization, liming and even supplementary feeding help to maintain natural productivity in culture pond. It is very essential to provide supplementary feed to enhance growth and production under culture operations. Feed of cheap and abundantly available local variety like crushed and broken rice and rice products, groundnut and coconut oil cake, poultry feed, Jagung, kue kacang, soybean cake, small shrimps ( Acetes ), foot of apple snail ( Pila ), bivalve meat and prawn waste from freezing plant, trash fish or any fish or any non – oily inexpensive fish, squid meat, butcher waste, dll., in nutritionally balanced form is provided as supplementary feed. The feed may be given once or twice in a day at the rate of 5 – 10 % body weight. Feeds containing about 40 % protein have been found to give better growth. For carps particularly during the periods of absence of live food (plankton) in pond, food balls of ground nut oil cake and brawn rice mixed in the ratio of 1 :1 may be given.

Pro D ucti Hai n A n D har v esti n G :

As these prawns attain marketable size in about five months, two crops of prawns could be produced in a year. Mixed culture of M.malcolmsonii with Indian major carps and minor carps indicated higher growth production rate and survival (Rajyalakshmi et al, 1979, Venkateswaram et al, 1979). Maximum production of 327 Kg of prawns and 2, 084 Kg of fish was achieved at 30, 000 / ha mixed stocking rate. Under a system of stocking twice and repeated harvesting Ramaraju etal (1979) and Rajyalakshmi et al (1983) reported a production of 900 Kg/ha/year of the same species. About 1000 Kg/ha/year of prawns and 3000 Kg/ha/year of fish can be obtained from the polyculture system. M. rosenbergii could be cultured along with milk fish and mullets in brackish water ponds with a 12 – 25 % salinity. An individual growth of 100 gr/ 5 months has been reported with a stocking density of 29, 000 -1, 66, 600 /ha.

In prawn culture, either in monoculture or polyculture, early harvest is better for good returns. Unlike fishes, prawns take feed and moult very frequently during the process of growth. If the harvesting time is prolonged, chances of cannibalism is more and this ultimately affects the survival rate. Two principal methods are generally followed to harvest the prawn. Intermittent harvest is carried out to remove the larger prawns. The other method is complete harvesting at the end of culture. Generally the fishes are harvested only after 12 months. By adopting the above stated techniques it is possible to obtain prawn production of over one ton/ha/yr with average survival of 50 % in either one or two crops and over 3 tons/ha/yr fish with survival of 50 – 80 %. Farming for this should be done with proper management and measures.

Saya n teg R pada e D F Saya S H F ar M di dalam G jaring :

Various types of combinations of aquaculture, pertanian, animal husbandry and horticulture can constitute the integrated fish farming web. Integrated fish cultures attuned economically and socially for rural development treats the water and land economically and socially for rural development. It treats the water and land ecosystem as a whole with the good of producing valuable protein from wastes, changing ecological damage into benefits and sustaining local circulation of resources. This strategy of ecological aquaculture can not only increase fish production and further improve ecological efficiency but also improves social and ecological upliftment. It is not only useful in the development of fish culture but will also improve the quality of the environment. The control water of quality by means of fertilization takes priority in fish culture management. The fish pond is a living habitat for fish, a culture base for living food organisms and a place of oxygenation of decomposed organic compounds. These properties determine the characteristics of the input and output of matter and energy in integrated fish culture.

S um M ar kamu

In olden days, the average yield of fish from ponds was as low as 500 kg/ha/yr. This quantity is considered as very poor. In composite fish culture more than 10, 000/kg/ha/yr fish yield can be obtained in different agro-climatic regions of our country.

Monoculture is the culture of a single species of fish in a pond. Composite fish culture is undoubtedly more superior over monoculture. In composite fish culture, the above problems will not be found. Six varieties of fishes utilize food of all niches of the pond, get good amount of food, grow well without any competition and the yield is also very high.

Fishes can be reared in paddy, wheat and coconut fields. Fruiting, flowering plants and vegetable plants are cultivated on the dykes. Azolla – fish culture is also becoming popular.


Teknologi Pertanian
Pertanian Modern
Pertanian Modern